

THURSDAY 7TH | FRIDAY 8TH NOVEMBER 2013

Technological advances in Sanitation and Drinking Water Treatment

Prof. Mariachiara Zanetti DIATI, Politecnico di Torino

Disinfection

Disinfection by-products (DBPs): inorganic, organic volatile, hydrophobic non volatile, hydrophylic chlorinated, non chlorinated aliphatic, aromatic

Generated by chlorine disinfectants (HClO, ClO_2) and O_3

DBPs precursors:

Natural Organic Matter (NOM) Turbidity, Fe Temperature, pH Disinfectant dose NH₃/NH₄⁺

> known DBPs UNlimited by regulations

DBPs features:

probable carcinogenic probable endocrine disruptor

	WHO 2011	EPA 2008	EU DIR 1998	I DL 2001
THMs	Cloroformio: 300 Bromoformio: 100 Dibromocloromet ano: 100 Bromodicloromet ano: 60	80	100 (150*)	30
CHLORITE	700	1000	700	700 (200*)
CHLORATE	700	-	-	-
BROMATE	10	10	10 (25*)	10 (25*)
PERCHLORATE	-	15	-	-

* temporary value

DBPs + precursors removal:

conventional processes: chemical oxidation (ClO_2, O_3, H_2O_2) adsorption on activated carbon (GAC or PAC)

Novel processes: ADVANCED OXIDATION PROCESSES (AOPs) Oxidant: hydroxyl radical ·OH

- H_2O_2/Fe^{2+}	(Fenton)
- H_2O_2/Fe^{3+}	(Fenton - like)
- $H_2O_2/Fe^{2+}(Fe^{3+})/UV$	(Photo assisted Fenton)
- H_2O_2 / Fe ³⁺ - Oxalate	
- Mn ²⁺ /Oxalic acid/Ozone	
- $TiO_2 / hv / O_2$	(Photocatalysis)
- 0 ₃ /H ₂ O ₂	
- 0 ₃ /UV	
 - H ₂ O ₂ / UV	R. Andreazzi et al./Catalysis Today 53 (1999) 51–59

Advanced Oxidation Processes (AOPs):

Agente ossidante	Potenziale di ossidazione elettrochimica (E), Volts	Valori di E relativi al Cloro
Fluoro (F ₂)	3.06	2.25
Radicale ossidrile (OH•)	2.80	2.05
Ossigeno (atomico) (O [•])	2.42	1.78
Ozono (O ₃)	2.08	1.52
Perossido di Idrogeno (H ₂ O ₂)	1.78	1.39
Radicale Idroperossido (HO ₂ •)	1.70	1.30
Ipoclorito (HOCI)	1.49	1.10
Cloro (Cl ₂)	1.36	1.00
Biossido di Cloro (ClO ₂)	1.27	0.93
Ossigeno (molecolare) (O ₂)	1.23	0.90

WT processes critical issues: inorganic pollutants

novel treatments

biological oxidation: Membrane Biofilm Reactor (MBR) membrane processes: microfiltration + reverse osmosis (RO) nanofiltration + ultralow pressure RO

Biological oxidation + membrane processes

Dissolved materials

Integrated MBR

Recirculated MBR

Membrane processes

D

WT processes critical issues: organic pollutants

pesticides, solvents, phenols, PAH fuel additives (BTEX, MTBE) DBPs, pharmaceuticals

Conventional treatments: adsorption on activated carbon (GAC or PAC) chemical oxidation (CIO_2, O_3, H_2O_2)

Novel treatments: biological oxidation Advanced Oxidation Processes (AOPs)

WT processes critical issues: organic pollutants

ADVANCED OXIDATION PROCESSES (AOPs)

D

WT processes critical issues: bio-pollutants

Warm temperature + high nutrient load \rightarrow blooming of ALGAL PRODUCTS and cyanobacteria (blue-green algae)

Toxin growth, depletion of water organoleptic features

Conventional treatments: coagulation/flocculation

Novel treatments: membrane processes acidification (CO₂ or HCl) + coagulation/flocculation

Coagulation/flocculation critical issues

Removal of turbidity algal products NOM dissolved salts

Technical improvements:

- new coagulants: new poly aluminium chloride (PAC) reagents, Fe +Al salts, pre-hydrolyzed reagents with cationic polymers, organic polymers;
- 2) coagulation/flocculation + other unit processes: ferric sulfate + ion exchange nano activated carbon + alum coagulation + membrane processes

WWT processes: framework preliminary \rightarrow primary > oxidation/nitrification predenitrification sedimentation treatments secondary sedimentation Anaerobic (disinfection) Digestion dewatering thermal treatment

WT processes: critical issues

- Improvement of Removal efficiency:
- Nitrogen removal
- o specific local requirements about N, P
- Emerging Contaminants

- Enhancement of sludge valorization
 - \Rightarrow energy efficiency
 - \Rightarrow environmental sustainability

WT processes critical issues: N removal

Conventional processes: pre-denitrification/nitrification

Sequencing Batch Reactor (SBR)

Critical issues: sidestreams with low C/N (<I)</p>

(++ sludge water from Anaerobic Digestion)

- I5-20% of influent N
 load
- TKN = 600 1000
 mg/L
- Alkalinity: ~50% of the necessary amount to obtain a complete nitrification

Parameter	Value / Range	References
рН	7.18 - 8.42	Marsalek et al. (2004)
	230	Helliga et al, (1999)
BOD₅ (mg/l)	109 ± 44	Vandaele et al., (2000)
	1400 - 2000	Gali Serra A., (2006)
00D (//)	650	Köz Utku, (2007)
COD (mg/l)	700 - 1000	Wett et al., (1998)
BOD ₅ / COD	0.14 - 0.2	Vymazal (2010)
COD _{sol} / NH4 ⁺ -N	0.29 - 1.19	Marsalek et al. (2004)
	943 - 1513	Marsalek et al. (2004)
	1180 ± 140	Van Dongen et al., (2001)
NH4 -N (mg/l)	800 - 900	Dosta et al., (2007)
	450 - 750	Vymazal (2010)
	1053	Helliga et al, (1999)
IKN (mg/l)	859	Vymazal (2010)
NO2 ⁻ -N, NO3 ⁻ -N (mg/l)	0-3	Vymazal (2010)

N removal: innovative processes

Continuous flow nitrification/denitrification in an alternated single phase

- CSTR with on/off temporized aeration
- on-line monitoring of process parameters (DO, ORP, pH, NH₄⁺, NO₃⁻)
- tailored lenght of biological process phases \implies removal efficiency improvement
- no mixed liquor recirculation + aeration optimization \Rightarrow energy efficiency improvement
- several full scale applications in Italy

N removal: innovative processes

Autotrophic processes:

Nitritation/Denitritation

Nitritation: $NH_4^+ + 1.5O_2 \rightarrow NO_2^- + 2H_2O + 2H^+$

Denitritation: $NO_2^+ + 0.5CH_3OH \rightarrow 0.5N_2 + 0.5CO_2 + 0.5H_2O + OH^-$

AOB (ammonia oxidant bacteria) growth is promoted against NOB (nitrate oxidant bacteria):

- T >25°C
- DO < 2 mg/L
- NH₄⁺ (pH >7.5-8)
- low HRT

SHARON[®] (Single Reactor High Activity Ammonia Removal over Nitrite) (1990, Delft University)

- 25% Oxygen demand
- 40% C demand
- sludge generation lower than active sludge processes
- several full scale applications worldwide

WT processes critical issues: N removal

Autotrophic processes:

ANAMMOX[®] (Anaerobic Ammonium Oxidation) (1999, Delft)

NH₄⁺+ 1.32NO₂⁻ + 0.066HCO₃⁻ + 0.13H⁺ → 1.02N₂ + 0.26NO₃⁻ + 2.03H₂O + 0.066CH₂O_{0.5}N_{0.15}

NH_4^+ is directly oxidized to N_2 using NO_2^- as the e- acceptor under anoxic conditions

- no need of Oxygen
- no need of Carbon (CO_2 is employed to produce biomass)
- depletion of 60/90% energy demand
- reduction of CO_2 emissions (up to 90%)
- sludge generation lower than active sludge processes

N removal, autotrophic processes:

- several full scale applications worldwide:

SHARON + ANAMMOX in 2 separate reactors

CANON[®] (Completely Autotrophic N Removal over Nitrite) or SNAP[®] (Single stage Nitrogen removal using Anammox and Partial Nitritation) (SHARON + ANAMMOX in a single reactor)

DEANNAMMOX[®] or DEMON[®](denitrification + ANAMMOX)

Industrial/full scale applications:

Processo	Configurazione impiantistica	Alimentazione	Т (°С)	DO (mg/l)	ANR* (kgN/m³d)	Fattori di controllo	Rif.
	SBR		30	<0,1	0,06		Sliekers et al. (2002)
	Air pulsing SBR	Sludge liquor	21	0,5	0,36		Padìn et al. (2009)
CANON - Completely Autotrophic nitrogen removal over nitrite	Airlift	Syntetic	-	0,5	1,5	DO, ammonia, AOB population	Sliekers et al. (2003)
	UASB	Sludge liquor	30	External aeration 0,6	0,06		Ahn & Choi (2006)
	MBBR	Sludge liquor	30	١,8	0,36		Cema et al. (2006)
	MABR	Syntetic	35	0,5	0,77		Gong et al. (2007)
DEMON - DEamMONification	SBR	Sludge liquor	28	0,3	0,70	Time, pH, DO	Wett (2007)
OLAND - Oxygen – limited autotrophic	RBC	Sludge liquor	14	١,0	0,42	-	Pynaert et al. (2004)
nitrification and denitrification	SBR	Syntetic	33	low	0,05	Time, pH,	Kuai et al. (1998)
	SBR, high rate		-	-	1,058	Time, pH	Pynaert et al. (2003)
Aerobic Deammonification	RBC	Leachate	-	-	0,6	-	Hippen et al (1997)
SNAP Single Stage Nitrogen Removal	+ biomass carrier	Leachate	35	0,5 – 2,5	0,31-0,45	HRT, aeration rate, T, pH	Lieu et al. (2005)
* ANR = Nitrogen Removal rate by Anammox b	oacteria						

i.e. Phosphorous removal and Demon Moving Bed Biofilm Reactor (Demon MBBR)

WT processes critical issues: Emerging Contaminants (EC)

- Xenobiotic compounds
- Endocrine disruptor compounds
- Organic micropollutants
- Pharmaceuticals and Personal Care Products (PPCPs)

antiseptics/disinfectants, fragrances, pesticides, insects repellents, sun protection lotions, alkylphenols External use, NO METABOLIC PROCESSES involved

Persistant Organic Pollutants

Emerging Contaminants (EC): origin and diffusion

Pharmaceuticals

- Antiflogistici (ibuprofene)
- Regolatori di lipidi (acido clofibrico)
- Antiepilettici (carbamazepina)
- Psicoattivi, tranquillanti (diazepam)
- Betabloccanti (sotalol)
- Antistaminici
- Citostatici
- Mezzi di contrasto (iopromide)
- Antibiotici (eritromicina)
- Ormoni (17α–etinilestradiolo)

Pharmaceuticals: diffusion

Table 1

Occurrence level of several EDCs detected in municipal wastewaters, surface waters and drinking waters

Type of water	Location	Compounds detected	Conc., (ng/L)
Municipal	UK [7]	Nonylphenol	1.2–2.7
wastewaters		Estrone (E1)	15-220
		Estradiol (E2)	7–88
	Germany	Nonylphenol	199
	[8]	Estrone (E1)	3.4
		Estradiol (E2)	0.9
		Ethinylestradiol	1.4
		(EE2)	
	Japan	Nonylphenol	80–1240
	[9]	Estradiol (E2)	2.7–48
Surface	Germany	Nonylphenol	34
waters	[8]	Estrone (E1)	0.7
		Estradiol (E2)	0.6
	Japan	Nonylphenol	250
	[10]	Estradiol (E2)	2.1
Drinking	Germany	Nonylphenol	8
water	[8]	Estrone (E1)	0.4
		Estradiol (E2)	0.3

N. Bolong et al. / Desalination 239 (2009) 229-246

Conventional treatments:	Removal efficiency
Adsorption on activated carbon Coagulation/flocculation Chemical oxidation	40-90% <20% 60-90%
Biological processes low-medium biodegradability	40-80%

Pharmaceuticals: novel treatments

many patented Advanced Oxidation Processes (AOPs) tested on laboratory/pilot scale:

i.e. USAMe® (SEED, UniSA)

WT processes critical issues: **sludge treatment**

Pre-treatments aimed to increase biogas production in AD:

- **mechanical**: ultrasonic, lysis centrifuge, liquid shear, grinding
- chemical: oxidation (O₃, H₂O₂, Fenton) alkali treatments (NaOH > KOH > Mg(OH)₂ and Ca(OH)₂)
- thermal : low (< 100°C) and high (> 100 °C) temperatures

Pretreatment method	Treatment conditions	Feed concentration	VS destruction	Electrical consumed (kWh kg ⁻¹ VS fed)	Thermal consumed (kWh kg ⁻¹ VS fed)	Max biogas (kWh kg ⁻¹ TS fed)
None-mesophilic		6%	40%	0.04	0.5	1.9
None-thermophilic		6%	50%	0.03	1.0	2.4
Biological (thermal)	70°C 9–48 h	6%	50%	0.03	1.0	2.4
Thermal hydrolysis	170°C 15–30 min	9%	60%	0.04	2.0	2.9
Sonication	100 W, 16 s, 30 kW m ⁻³	6%	50%	0.37	0.5	2.4
Ball milling		6%	50%	1.04	0.5	2.4
High pressure	200 bar	6%	50%	0.33	(1.0)	2.6

from Carrère et al., 2010

WT processes critical issues: **sludge disposal**

Conventional management strategies:

- landfilling: traditional strategy not allowed by current Regulations;
- agricultural use: material recovery limits defined by Regulations persistent organic pollutants
- thermal treatments

WT processes critical issues: sludges

Thermal treatment:

- Co-incineration with MSW
- Co-incineration in high energy demand plants
- incineration: large WWT plants costs evaluation environmental impact

Sludge Incineration: fluid bed reactor, atmospheric pressure

WT and WWT processes: energy demand

D

WT and WWT processes: energy efficiency

max Energy savings:

General intervents: maintenance optimization optimization of buildings cooling/heating/lighting	5-10% 10%
WT plants: inverters on pumps optimization of coagulant dose	5-33% 5-35%
WWTPs: inverters on pumps enhanced SS, COD, BOD removal in primary settling	<30%
(+ coagulants)	25%
high efficiency aeration devices	25%
optimization of oxygen demand	15%
control of process parameters (D.O., NH4+, NO3-)	20-30%
optimization of mixed liquor recirculating flow rate	16%

(Foladori, 2013)

Atti della 49^ Giornata di Studio di Ingegneria Sanitaria Ambientale | Risparmio energetico negli impianti di trattamento dell'acqua