

Global Megatrends and European Vision for Future in Water Supply and Sanitation

Prof. Riku Vahala

Aalto University Department of Civil and Environmental Engineering Water and Environmental Engineering Research Group

Content

Global megatrends

Vision for future – compilation of four European vision documents:

- Water Supply and Sanitation Technology Platform (2005)
- Finnish Water Programme (2008)
- Joint Programming Initiative (2011)
- Swedish Water (2013)

Aalto University School of Engineering

Five examples from the research of Aalto University's doctoral students

Global megatrends

Adapted from: A. Klobut (2013): The impacts of megatrends on water supply and sanitation in selected large cities: Current state and future challenges

Population growth and urbanisation

Up to 9.3 billion people by 2050 (UN, 2012), dramatic increase in urban and peri-urban areas

- Increased stress on the environment
- Health risk of inadequate sanitation and waste management
- Increase in paved areas
- Escalating need for food, water supply, sanitation and drainage; infrastructure
- Shifting dietary preferences, need to reduce food-to-waste

Climate change

- Wet areas are getting wetter and dry areas even drier
- Extreme weather events, such as storms, floods and droughts, are more severe and intense
- Sea level rise poses a flood risk to coastal cities and may cause salt intrusion
- Erosion and desertification
- In the past 30 years (1976-2006), drought events had a cost of 100 billion € to the European economy
- The number of European river basins under water scarcity are expected to increase by up to 50% by 2030

Global population under water shortage extreme ($<500 \text{ m}^3/\text{c/y}$) high (500–1000 m³/c/y)

Kummu, M., Ward, P.J., de Moel, H., and Varis, O. 2010. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environmental Research Letters 5: 034006. doi:10.1088/1748-9326/5/3/034006

1940

1960

Water shortage affects 30 % of Europe's population, equal to **130 million inhabitants** (EC 2007)

1900

1980

2005

Economic growth

- The world-wide turnover of water market amounts to ~250 billion €
- Currently, China has the fastestgrowing economy in the world
- Improvement and implementation of modern technologies can be expected in water sector
- Changes in demography aging population in developed countries
- <u>BUT</u> 783 million people are still without access to safe drinking water, and 2.5 billion people still lack improved sanitation (WHO & UNICEF 2012)

Increasing environmental awareness

- More extensive and strict legislation can be expected to prevent pollution and control the use of natural resources
- Reduction of greenhouse gases are expected
 - water-energy nexus
- The role of renewable energy sources increases
 - shift from a fossil-fuel economy to a more bio-based economy
 - > major effect on the water cycle

Technological innovations and data explosion

- Membrane technologies gain popularity in water treatment facilities
- Water reclamation and reuse technologies develop further and become cheaper and thus more widely adapted
- Amount of data from the system and the environment has dramatically increased – limited amount of it is analysed and thus utilised in our decision-making process

Aalto University School of Engineering

Vision for future

Adapted from: WSSTP 2005, Finnish Water Programme, Water JPI 2011, Svenskt Vatten 2013

Quality and security are ensured by

- Continuous assessment of emerging pollutants and pathogens as well as their environmental behaviour and removal (incl. combined effects)
- Assessing and managing risks at all levels of the water cycle
- Removing the targeted compounds and micro-organisms from all types of water (drinking water, irrigation water etc.)
- Monitoring water quality comprehensively using rapid and on-line analytical methods

Example 1: Evaluating the toxicity is challenging.....

- What compounds are causing the observed effects?
- New compounds? Transformation products? Combined effects?
- Bioavailability of chemicals
- Low concentrations → expensive and sophisticated analytical devices
- Limitations in detection

Traditional monitoring is based on measuring concentrations \rightarrow Does not tell anything about the EFFECTS on aquatic ecosystems or human health!

... is the Effect-Directed Analyses (EDA) a solution?

(EDA) is designed to direct analysis toward those chemicals that actually CAUSE harmful effects.

Water cycle is managed in an integrated way by:

- Better understanding of the impacts and interactions of all water-related activities
- Decision support systems
- On-line monitoring
- Early warning systems
- Emergency response plans
- Better communication and community involvement
- Adaptive management for climate change
- More extensive use of aquifer recharge
- Water-wise bio-based economy
- Being integral part of sustainable urban planning

Demand and supply are balanced by

Closing water cycles and re-using water

Alternative water resources

- Rainwater harvesting
- Stormwater collection
- Desalination
- Wastewater reclamation

Demand management e.g.

- Saving water in agriculture, industry and households
- Detecting, controlling and repairing leakages
- Effective incentives

Environmental impact is reduced by

Resource-efficient water management

- Effective use of energy and chemicals (advanced control systems etc.)
- Energy recovery (heat, biogas, etc.)
- Nutrient recovery from biosolids or incineration ash
- Leakage control
- Innovative process concepts
- Energy-efficient devices (pumps etc.)

Control of pollutants at source

Producing less waste

Reducing the water-based emissions

Example 2: Removal of pharmaceuticals from wastewater

Kbiol	Ibuprofen	Carbamazepine	Diclofenac
Line1	4.6	0.2	0.5
Line2	5.9	0.2	0.7
Line3	5.4	0.2	0.5
average	5.3	0.2	0.6

Example 3: Release of N₂O from WWTP

Emissions of nitrous oxide N_2O may constitute a major part of the carbon footprint of the WWTP, being responsible for 35 – 65 % of the global warming index of the wastewater treatment (Johnson and Hiatt, 2009)

Annual emissions

Kosonen H. 2013

	Continuous on- line measurement	E-PRTR emission model	Short-term measurements in 2011	IPCC emission factor
	134,0 t/a	136,0 t/a	26,3 t/a	1,7 t/a
"	2,7% (Influent N)	2,8% (Influent N)	0,7% (Influent N)	0,035% (Influent N) Laitoksen nimi 13.11.2013 19

Example 4. Advanced process control in WWTP

Optimize the operation of wastewater systems by adequately managing and using all the information available in the plant.

...monitoring nitrate concentration

- Focus on the nitrate sensors in the denitrifying post-filtration unit of the WWTP
- Methanol is dosed with a feedback loop policy according to the NO₃-N concentration in an array of ten filters measured online with analytical instruments.

Picture retrieved from: www.flickr.com/photos/sameli/sets/72157607704932823/

- Development of an array of software sensors that estimates in real-time the nitrate concentration in the ten filters:
 - Back-up system to conventional analytical equipment for replacing out-of-order components.
 - Validation tools for existing field measurements.

Assets are managed cost-efficiently by

- Maintaining and replacing the 5.7 M km long network asset at the right moment and at the right place with minimum disturbances to third parties
- Optimal operation of all the 70 000 WWTPs
- Better construction materials and replacement technologies
- Low maintenance and long-lived pipes, pumps and robust processes
- Climate-adaptive solutions

Aalto University School of Engineering

- Integrative operation of sewer and WWTPs (incl. capasity)
- Control of excessive inflows to the separate sewer system

Example 5: Targeting of sewer network inspections and renovations

- Development of a systematic and comprehensive computer-aided procedure for deciding which network assets to renovate or inspect and when
- Risk based approach: All the pipes are categorized according to their condition (probability of failure) and the consequence of failure
- The approach combines the opensource GIS data with the utility's historic and operational data

Aalto University School of Engineering

Competitive advance of European water sector is maintained

- Continuous development of robust and costeffective technological solutions
- Time from innovation to market is reduced
- Smart water technologies are in use
- Solutions are tested for transferability to other sectors and areas of Europe and the world
- Barriers for innovation are removed
- Effective policy and management framework
- Water Stewardship
- Shifting from a conventional view of waste to a view of resource that can be processed for the raw material or for the recovery of energy

Water and food cycles

To enable this happen we also need...

- To understand the value of water, water-energy nexus, social perceptions, costs and all the bottlenecks
- Better investment climate to water infrastructure
- More training, communication and knowledge dissemination
- European standardisation (e.g. water reuse)
- Participatory approaches between the stakeholders
- and much more...

Aalto University - Where Science and Art meet Technology and Business

Yhdyskunta- ja ympäristötekniikan laitos 13.11.2013